IMUNITY
N o<

Ordering Tricks in SQL

By: Tom Muck

A database is like a book with no index--you store information in it, but unless you know how to get it out
in a particular order, it's not going to be very useful. Ordering is one of the most often used aspects of
SQL, yet one of the most under-used parts of the SQL language at the same time. You can often do some
really cool things through simple ordering of your data, and present the data in a different way. This
article addresses ordering for database queries in any situation, whether it's in a stored procedure, or in
inline SQL code in an ASP, ASP.NET, PHP, ColdFusion, or JSP page.

Note: The code shown has been tested in MS SQL Server, but will work in other databases that support
the syntax. In many cases, if your database does not support certain keywords, you might be able to find
an similar method of doing the same thing using equivalent functionality. MS Access queries are also
shown when possible.

You might be able to improve the accuracy of the ordering, such as in this listing of titles:

'A Tale of Two Cities'
'Dreamweaver MX: The Complete Reference'
'The Andromeda Strain'

Obviously, this listing is ordered alphabetically, but it is all wrong because of the insignificant words ('A’,
'"The') in the example. I'll address correct ordering of titles in this article.

Another area that is often neglected is the ordering of numbers that are stored as varchar, nvarchar, text,
or other textual data type values. Take this listing as an example:

ID,Name
'1",'Tom'
'10','Jack’
'100'",'Steve'
2" Jim'
'20",'Frank’

The numbers are ordered alphabetically, which puts them out of order as numbers. This will be addressed
in the article.

Forcing an order will be addressed: you can force data to be ordered based on some pre-defined criteria
that you set up. There are many uses for this type of ordering, and I will show you a few examples.

Ordering within a subgroup will be addressed. What do I mean by that? Well, consider this list of data:

'10','1",'Tom','Muck'
'20".'1",'ColdFusion'
'20','1','Flash Remoting'
'10",2"'Ray',"West'
'20",'2",'Dreamweaver MX'
'20',"2''ASP.NET'
'20",'2",'SQL Server'
'20",'2','Content Management'
'10",'3",'Massimo','Foti'
'20','3",'ColdFusion'
'20','3','JavaScript'
'20",'3','Dreamweaver MX'

This set of data does not follow the standard relational data model -- it is transactional data. The rows that
begin with a '10' are the key rows and the rows that begin with '20' are the data (or /ine item rows) for each
key row. They are linked by the record numbers in the second column. If we want to order the data by the
last name of the '10' row, then by the third field in the '20' row, we might have a hard time coming up with
one SQL statement that will do the trick.

Database tools are not going to help you build sorts like this, nor are the query building tools of
Dreamweaver MX, CF Studio, or other web development programs. They each require hand-coding of
your SQL. After having built the query, however, you can easily create a stored procedure out of it or
paste it into Dreamweaver MX when creating a recordset.

Ordering by Titles

The proper way to organize a series of book, article, or movie titles involves alphabetizing by the first
significant word, or removing certain common words that may be at the beginning of your title. The
English words commonly removed from a sort would be: a, an, the. Other languages may vary, but the
concept is the same. If your data is not stored in this way, however, you will have a hard time coming up
with a sort order that can be easily browsed by your end user.

Enter SQL.

Using Structured Query Language you can carefully structure the way that the title is sorted and
displayed. Some variations on SQL do not allow this type of query (Access, for example) but the majority
of RDBMS do. There are three main principles involved with this type of sort:

1. Using the CASE statement™.
2. Using string manipulation.
3. Using an alias for a column.

*CASE is not supported in MS Access. Sometimes you can use IIF instead of CASE.

These are three of the basic constructs in SQL coding that will make the job easy.

I will be using the SQL Server Pubs database as an example, but you can use any table in any database
that has a fitle column. Using the Titles table as an example, I can write the following SQL statement:

SELECT title, price
FROM titles
ORDER BY title

That gives me the following results:

Title Price
But Is It User Friendly? 22.9500
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 21.5900

Cooking with Computers: Surreptitious Balance Sheets 11.9500
Emotional Security: A New Algorithm 7.9900
Fifty Years in Buckingham Palace Kitchens 11.9500
Is Anger the Enemy? 10.9500
Life Without Fear 7.0000
Net Etiquette NULL
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 20.9500
Prolonged Data Deprivation: Four Case Studies 19.9900
Secrets of Silicon Valley 20.0000
Silicon Valley Gastronomic Treats 19.9900
Straight Talk About Computers 19.9900
Sushi, Anyone? 14.9900
The Busy Executive's Database Guide 19.9900
The Gourmet Microwave 2.9900
The Psychology of Computer Cooking NULL

You Can Combat Computer Stress! 2.9900

You can see the the word "The" is in 3 of the titles, which completely nullify the sort order. Using a
CASE statement and string manipulation, we can pull the first several characters off the front of the title
and do things if the word is "a", "an", or "the". First, the string manipulation. Different databases will have
different syntax, but this works in SQL Server. What you want to do is test the first two characters for "a
", the first three characters for "an ", and the first four characters for "the ", and perform a different action
for each of these. You'll pull the word off the beginning of the title and put it at the end, using a preceding
comma. You'll then set the new "title" field to an alias named "newtitle". Here is the code:

SELECT NewTitle =

CASE Left(Title, 4)
WHEN 'The '
Then Right(Title, len(Title)-4) + ', The'
WHEN 'An '
Then Right(Title, len(Title)-2) +', An'
WHEN'A '
Then Right(Title, len(Title)-2) +"', A’
ELSE
Title
END

, price
FROM titles
ORDER BY NewTitle

Basically we are looking at the first 4 characters of the title, which is pulled off the 7it/e column with a
LEFT(Title, 4). You can see what follows next. Each variation on insignificant words (the, a, an) is given
a separate condition, with the _character filling in for a single character that can be anything. Finally, the
default case is to use the title with no alteration. Lastly, we order by the column alias NewTitle rather than
Title. This gives us the results we want:

Title Price
Busy Executive's Database Guide, The 19.9900
But Is It User Friendly? 22.9500

Computer Phobic AND Non-Phobic Individuals: Behavior Variations 21.5900

Cooking with Computers: Surreptitious Balance Sheets 11.9500
Emotional Security: A New Algorithm 7.9900
Fifty Years in Buckingham Palace Kitchens 11.9500
Gourmet Microwave, The 2.9900
Is Anger the Enemy? 10.9500

Life Without Fear 7.0000

Net Etiquette NULL

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 20.9500

Prolonged Data Deprivation: Four Case Studies 19.9900
Psychology of Computer Cooking, The NULL
Secrets of Silicon Valley 20.0000
Silicon Valley Gastronomic Treats 19.9900
Straight Talk About Computers 19.9900
Sushi, Anyone? 14.9900
You Can Combat Computer Stress! 2.9900

Picking the first 4 characters allowed us to simplify the CASE statement, rather than picking first 4 for
"the ", first 3 for "an ", and first 2 for "a ".

In MS Access you would not be able to code a query easily that accomplished this same thing, because the
basic construct of the IIF statement only allows two possible outcomes, whereas CASE gives you an
infinite number of options. To create a similar query in MS Access that only checks for the word "The ",
the following will work:

SELECT IIF(Left(Title,4) = 'The ',Right(Title, len(Title)-4) + ', The', title)
as newtitle

, price

FROM dbo titles

ORDER BY

[IF(Left(Title,4) = 'The ',Right(Title, len(Title)-4) + ', The', title)

Ordering a Text Field as Numeric

Once in a while you will find that you have a database column stored as text when in fact your values are
all numbers. If you try to sort the field with a SQL statement like this

SELECT ID, Name from MyTable
ORDER BY ID

you will end up with a sort order like this:

ID Name

1 Tom
10 Jack
100 Steve
2 Jim
20 Frank

To be able to sort the ID field numerically, you need to be able to covert the data into numeric data.
Again, databases such as MS Access will not support this on-the-fly conversion of data types, but most
modern RDBMS systems do. To sort the /D column numerically rather than alphabetically, you can
simply CAST the resulting column in your ORDER BY statement as a number:

SELECT ID, Name from MyTable
ORDER BY CAST(ID as int)

Now your sort looks like this:

ID Name
1 Tom
2 Jim
10 Jack
20 Frank
100 Steve

To implement a workaround in MS Access, you can use SUM on the ORDER BY clause, but you also
have to group your query by all fields:

SELECT ID, Name
FROM MyTable
GROUP BY id, Name
ORDER BY sum(ID);

Forcing Numerics to Sort When Combined with Text

What if your data contains some numbers and some text characters? Well, unfortunately in basic SQL you
are out of luck because there is no way to extract parts of fields easily. The SQL language does not
contain regular expressions. You could create a function that removes the numeric characters and puts
them into another field, then sorts numerically, but it is not an easy proposition, given the possible varying
lengths of the numeric portion of the number.

If you know that the text portion of the data is the same length, however, the SQL can be easily written.
Take a look at this sample data:

id Name user_id

I Tom userl
Jess userlO
Jim userl1

Mike userl2

Bruce user20

3

5

4

2 Frank user2
6

7 Clint user2l
8

Tony user8

You can see the user id field is part numeric and part text. If you wanted to sort on the text portion, but
also keep the numeric portion in numeric order, this would be easy in SQL, because the text portion is 4
characters in every row:

SELECT id, Name, user id
FROM SampleNumeric
ORDER BY CAST(RIGHT (user _id, len(user _id)-4) as int)

In this query we are simply taking the portion of the field that begins at the 5th character by choosing the
RIGHT portion of the field using the length of the field minus 4. The MS Access version of the same
query would look like this:

SELECT id, Name, user id

FROM SampleNumeric

GROUP BY id, name, user_id

ORDER BY SUM(RIGHT (user id, len(user id)-4));

What if the text portion was varying in length, however? We can do this in SQL Server and other
databases that support PATINDEX and REVERSE (or their equivalents) but not MS Access. The
following table contains a user id field that has varying length text followed by number. The user id field
is in alphabetical order:

id Name user_id

2 Frank alexandria2
6 Bruce alexandria20
7 Clint alexandria2l
1 Tom buffalol

Jess buffalol0
Jim buffaloll
Mike buffalo12

o K~ W W

Tony buffalo8

Now it becomes tricky without regular expressions. The SQL to pull the numeric portion out of the field is
a little trickier, but it can be done. The following SQL will sort the data on the numeric portion of user id
only:

SELECT id, Name, user _id

FROM SampleNumeric2

ORDER BY

CAST(

RIGHT (user_id, PATINDEX('%[0-9]["0-9]1%', REVERSE(user _id))
) as int)

This gives the result:

id Name wuser_id

1 Tom buffalol
Frank alexandria2
Tom buffalo8
Jess buffalol0

Mike buffalol2

2

8

3

5 Jim buffalol1
4

6 Bruce alexandria20
7

Clint alexandria2l

Let's examine the SQL: The CAST() function is just like you've seen in the other examples. We will cast
the result of the inner expression as an integer. The PATINDEX and REVERSE functions are doing

something strange though:

CAST(
RIGHT (user_id, PATINDEX('%[0-9]["0-9]%', REVERSE(user _id))
) as int)

Look at REVERSE first: this reverses the string in the field so that the numbers are first. Because we don't
have regular expressions in SQL, it is difficult to pick the first occurrence of a range of characters. After
reversing the characters, the PATINDEX function returns the LAST numeric character it finds. This is
made possible by the use of the wildcard % in the first character position to find any character, the range
of characters to search for in the next position [0-9] (which finds one character), and the range of
characters NOT to search for [*0-9] (one character, once again.)

That is good if you need it sorted ONLY numerically, but what if you want it sorted on the numeric AND
text portion? The following SQL will do that:

SELECT id, Name, user_id

FROM SampleNumeric2 /**/

ORDER BY

LEFT(user_id, len(user_id)-patindex('%[0-9]["0-9]%',reverse(user _id))),
CAST(

RIGHT (user _id, patindex('%[0-9]["0-9]%',reverse(user_id))

) as int)

The query will return the results intended:

id Name user_id

2 Frank alexandria2
6 Bruce alexandria20
7 Clint alexandria2l
1 Tom buffalol
Tony buffalo8

Jess buffalo10
Jim buffaloll

A W W

Mike buffalol2

The query is based on the previous query, but includes the exact opposite functionality in the first ORDER
BY clause to return the alphabetic portion of the field:

LEFT(user_id, len(user_id)-patindex('%[0-9]["0-9]%',reverse(user_id)))

The number of numeric characters is subtracted from the length of the field to yield a result of ONLY text
characters that we know are in the field.

These types of queries only work if you know what kind of data you can expect in the field, such as text
characters followed by numeric characters. Any mixing of characters that you can't predict makes a query

like this fail.

Forcing Numeric Characters to the Bottom of a Sort

One thing that you can do easily though is to force the fields that begin with numeric characters to the
bottom of your listing, rather than display at the top. If you want to force the rows to the bottom, try this:

SELECT ProductName

FROM Products

ORDER BY ISNUMERIC(left(productname,1))
, productname

Here you are creating a new unnamed column to sort by: the code
ISNUMERIC(left(productname, 1))

will return a 1 or a 0 depending on whether the first letter of the field is a number or not. If it is, the return
value is 1. If it isn't, the return value is 0. Since you are sorting on that field first, all the Os will rise to the
top. The 1s will fall to the bottom. An MS Access version of this query might look like this:

SELECT ProductName
FROM Products
ORDER BY IIF(left(ProductName,1) <'a',1,0), ProductName

Forcing a Specific Value to the Top or Bottom

Just as you can force the numeric values to the bottom of your resultset in the previous example, you can
force any specific value to the top or bottom of the results in the same way. For example, the Employee
table in the Pubs database contains employee names (the fname and /name tields) with employee id
numbers (the emp id tield). The IDs have two different formats, if you examine the data. Some of the
emp_id fields contain a letter followed by a dash character and several other letters. Some are made up
entirely of characters. To order on emp_id, you would use this SQL:

SELECT emp _id, fname, Iname
FROM employee
ORDER BY emp id,Iname, fname

You would get these results:

emp_id
A-C71970F
A-R89858F
AMDI15433F
ARD36773F
CFH28514M
CGS88322F
DBT39435M
DWR65030M
ENL44273F
F-C16315M
GHT50241M
H-B39728F
HAN90777TM
HAS54740M
JYL26161F
KFJ64308F
KJJ92907F
L-B31947F
LAL21447M
M-L67958F
M-P91209M
M-R38834F
MAP77183M
MAS70474F
MFS52347M
MGK44605M
MJP25939M
MMS49649F

fname
Aria
Annette
Ann
Anabela
Carlos
Carine
Daniel
Diego
Elizabeth
Francisco
Gary
Helen
Helvetius
Howard
Janine
Karin
Karla
Lesley
Laurence
Maria
Manuel
Martine
Miguel
Margaret
Martin
Matti
Maria

Mary

Iname
Cruz
Roulet
Devon
Domingues
Hernadez
Schmitt
Tonini
Roel
Lincoln
Chang
Thomas
Bennett
Nagy
Snyder
Labrune
Josephs
Jablonski
Brown
Lebihan
Larsson
Pereira
Rance
Paolino
Smith
Sommer
Karttunen
Pontes

Saveley

PCMO98509F Patricia ~ McKenna
PDI47470M Palle Ibsen
PHF38899M Peter Franken
PMA42628M Paolo Accorti
POK93028M Pirkko Koskitalo
PSA89086M Pedro Afonso
PSP68661F Paula Parente
PTC11962M Philip Cramer
PXH22250M Paul Henriot
R-M53550M Roland Mendel
RBM23061F Rita Muller
SKO22412M Sven Ottlieb
TPO55093M Timothy O'Rourke
VPA30890F Victoria Ashworth
Y-L77953M Yoshi Latimer

Suppose you wanted to sort by emp id, but you wanted all the emp id fields with the dash character to
magically rise to the top. Use string manipulation and the CASE statement once again:

SELECT emp _id, fname, Iname
FROM employee
ORDER BY

CASE WHEN LEFT(emp _id, 2) LIKE '%-' THEN
0

ELSE
1

END

, emp_id, Iname, fname
The equivalent query in MS Access would be:

SELECT emp _id, fname, Iname
FROM Employee

ORDER BY

[F(left(emp_id,2) LIKE "*-',0,1)
,emp_id, Iname, fname;

The Access IIF statement is saying "If the left 2 characters contain any number of characters followed by
a - sign, use 0 to sort by, otherwise use 1."

In SQL Server you can also simply use a PATINDEX function :

SELECT emp _id, fname, Iname
FROM employee

ORDER BY

patindex(' -%',emp id) desc

, emp_id, Iname, fname

The PATINDEX function returns a 1 or a 0. If the second character is a '-' character, it will return 1. We
order the field in DESC order because we want the 1 at the top, and the 0 at the bottom. Notice the emp_id
field is still in perfect alphabetical order otherwise. The resulting sort order looks like this:
emp _id fname Iname

A-C71970F Aria Cruz

A-R89858F Annette Roulet

F-C16315M Francisco Chang

H-B39728F Helen Bennett

L-B31947F Lesley Brown

M-L67958F Maria Larsson

M-P91209M Manuel Pereira

M-R38834F Martine Rance

R-M53550M Roland Mendel

Y-L77953M Yoshi Latimer

AMDI15433F Ann Devon

ARD36773F Anabela Domingues

CFH28514M Carlos Hernadez

CGS88322F Carine Schmitt

DBT39435M Daniel Tonini

DWR65030M Diego Roel

ENL44273F Elizabeth Lincoln

GHTS50241M Gary Thomas

HAN90777M Helvetius Nagy

HAS54740M Howard Snyder

JYL26161F Janine Labrune

KFJ64308F Karin Josephs
KJJ92907F Karla Jablonski
LAL21447M Laurence Lebihan
MAP77183M Miguel Paolino
MAS70474F Margaret Smith
MFS52347M Martin Sommer
MGK44605M Matti Karttunen
MJP25939M Maria Pontes
MMS49649F Mary Saveley
PCM98509F Patricia McKenna
PDI47470M Palle Ibsen
PHF38899M Peter Franken
PMA42628M Paolo Accorti
POK93028M Pirkko Koskitalo
PSA89086M Pedro Afonso
PSP68661F Paula Parente
PTC11962M Philip Cramer
PXH22250M Paul Henriot
RBM23061F Rita Muller
SKO22412M Sven Ottlieb
TPO55093M Timothy O'Rourke
VPA30890F Victoria Ashworth

Forcing NULL to the Bottom

Another time you might want to force a column to the bottom is if the column contains a NULL. The
easiest way to do this is to use the ISNULL function in SQL Server (other databases have similar
functions).

SELECT Col001, C01002, Col003, Col004
FROM testtable

ORDER BY c0l002

, isnull(col004,'zzzzzzz7")

, col001

, col003

Here we are just forcing the column to the bottom with a string of characters that is guaranteed to be last
in a sort order.

Another way to do it is like this:

SELECT Col001, Col002, Col003, Col004

FROM testtable

ORDER BY co01002

, CASE WHEN c01004 IS NULL THEN 1 else 0 end
, col001

, col003

The Microsoft Access approach would be to use the IIF construct, once again:

SELECT Col001, Col002, Col003, Col004
FROM testtable

ORDER BY co0l1002

, [IF(isnull(co0l004),1,0)

, col001;

, col003;

Ordering within a Subgroup

The last item I want to talk about is perhaps the most complex, as it deals with transactional data.
Transactional data does not conform to standard relational database structure. Your field names and field
mappings will not describe the data, because you have two different types of rows, identified by a key
field. Because the fields do not have the same type of data in each row (and the "20" rows contain one less
field), the naming of the fields becomes insignificant. The first column could be named "key" and the
second column could be named "recordNumber", but the remaining columns have differing data. For that
reason, ['ll simply refer to them as col001, col002, col003, and col004. This is how they are named
automatically by SQL Server as the data is imported.

Transactional data is typically stored in a text file as an output from another database system, data
received from a client for processing by you, or data that has been generated as a report.

'10','1",'Tom','Muck'
'20".'1",'ColdFusion'
'20",'1','Flash Remoting'
'10",2",'Ray',"West'
'20",'2",'Dreamweaver MX'
'20',2"'ASP.NET'
'20",'2",'SQL Server'
'20",'2','Content Management'
'10",'3",'Massimo','Foti'
'20','3",'ColdFusion'
'20','3','JavaScript'
'20",'3','Dreamweaver MX'

As you can see, the highlighted fields are the key fields in the data. Data is stored initially in sequential

order in a text file, but when imported to SQL, the only way to retrieve the results in any kind of order is
by using an ORDER BY clause and ordering by the second column (the record number). However, if you
do this, your transactional order will be lost, because there is no line number. We can order on subgroups
as long as our original record number (col002) is the column that we want to sort on for the results. Try
the following statement:

SELECT Col001, Col002, Col003, Col004
FROM TransactionalTable

ORDER BY co0l002

, col001

, col003

Your result will look like this:

Col001 Col002 Col003 Col004
10 1 Tom Muck
20 1 ColdFusion

20 1 Flash Remoting

10 2 Ray West
20 2 ASP.NET

20 2 Content Management

20 2 Dreamweaver MX

20 2 SQL Server

10 3 Massimo Foti
20 3 ColdFusion

20 3 Dreamweaver MX

20 3 JavaScript

The third column in the subgroup of the "20" records is now sorted. If you want to sort by some other
field, however, such as col004 (the last name in the "10" rows), you would have a hard time trying to use
standard SQL syntax. Sorting on last name is easy -- carrying the "20" records along with that name is the
hard part.

It turns out the easiest way to do this is to create another field on the fly to act as the last name field. We'll
populate the field with the last name in col004 for the "10" records, and populate the new field with that
name for the "20" records. Sound easy? It's not, but once you have the code you can use it for any
situation where you have to group records. The SQL is as follows:

SELECT t.col001, t.col002, col003, col004
FROM TransactionalTable t
ORDER BY
CASE when col001 ='10' THEN
col004
ELSE
(SELECT co0l004 from TransactionalTable where col002 = t.col002 and col001 ="10")
end
, col001, col003

We created the new field on the fly in the ORDER BY clause using CASE. In the "10" rows, we merely
use col004 as is. In the "20" rows, we pull the col004 from the matching record in the "10" row. That fills
up the field so that the record remains grouped together in the ORDER BY clause. Then we merely sort on
col001, which floats the "10" records to the top of each group, and then co/003, which orders the items
within the "20" group.

In MS Access you can't create this query in one pass, but you can turn it into two queries: one can be a
saved query named Transactionl:

SELECT t.col001, t.col002, col003, col004
, (SELECT co0l004 from TransactionalTable where col002 = t.col002 and col001 ="'10") as DUMMY
FROM TransactionalTable t;

This creates a temporary view of the data with the added column holding the last name field (col004).
Then you can run a query against this view and order it the way you want:

SELECT col001, col002, col003, col004
FROM Transaction]
ORDER BY dummy, col001, col003;

Conclusion

Ordering your results can be enhanced with a few simple tricks. Many web programmers are content to
learn a few SQL keywords, but there are a lot of useful functions in the SQL language that make it easy to
return the results that you need, and in any order that you need them.

Keywords
SQL, Dreamweaver, ASP.NET, ASP, ColdFusion, PHP, JSP, DW, SQL Server

