
12

A
r
t
ic
le

s

13

A
r
t
ic
le

s

If you are a Web programmer who works with ColdFusion, JSP, or ASP.NET and has said to himself “Flash isn’t for me”, then
this article is for you.

I’ve been involved with Web programming for a few years and have always worked with HTML in conjunction with a server-
side technology such as ColdFusion, ASP, or PHP. Dreamweaver MX is an application development environment that makes
it easy for the average Web page designer to break into the world of application development. Using Dreamweaver MX, you
can create HTML pages that co-exist with server-side functionality on the page in the guise of server-side tags or scriptlets.
These hybrid pages (called templates) are the basis of much of the application development that takes place on the Web
today. A typical user experience is like this:

The user comes to your site. He enters something into a search field and presses submit. After hitting the submit button,
the user waits for a response from the server. The user’s browser loads in the page and then the user is able to view the
search results. If the results span over more than one page, there might be a link to the next set of results. If the user
clicks the link, he sends the search back to the server, which conducts the search again and this time sends back the second
page of results. Again, a new page is loaded into the browser.

This is client/server communication at its most primitive, yet it is the accepted standard on the Web. You can liken this
to a phone conversation. Imagine that you are conversing with a friend on the phone. You ask a question and hang up the
phone. Your friend calls you back and answers the question, then hangs up. You call him back and add something to the
conversation and hang up again. This is similar in concept to how the client/server communication with a Web browser
operates. Two plastic cups with a taught string between them gives you a more advanced communication method than
that.

I have a confession to make. I have never been a big fan of HTML. The language is archaic and limited. It has not really
advanced in the last 10 years. Computers, in that same time period, have increased in speed 500 times. Application devel-
opment for desktop applications has gotten to the point where you can build a program to do whatever your imagination
dreams up. We use HTML to build Web applications because that is the universally accepted Web format. With the intro-
duction of Flash MX, the Web has been upgraded.

What makes Flash MX unique – and infinitely superior to previous versions of Flash – is the introduction of UI Components
in conjunction with the new Flash Remoting technology. UI Components are fully functional interface elements that are
completely configurable and skinable. In previous versions of Flash, this sort of functionality had to be created for each
new application. The addition of components allows the developer to concentrate on the functionality of the Web applica-
tion rather than worry about the mundane aspects of how the buttons and form elements work. This is similar in concept
to how Delphi and Visual Basic work in the arena of application development.

The Flash Remoting technology is the equivalent of true client/server communication on the Web. Gone is the click/wait/
reload approach of HTML. With Flash MX, you can build your Web application as a unit. The communication with the server
is done by Flash behind the scenes. When you build a Web site with Flash MX using Flash Remoting, the user experience
is similar to what you would expect from a desktop application. I’m not advocating replacing all HTML pages with Flash
movies, but I am suggesting that any client/server communication should be performed with Flash rather than using the
methods that you may have become accustomed to using HTML in conjunction with scriptlets.

Flash Remoting is a technology that resides on the application server. It is included with ColdFusion MX and JRun 4, and
offered as an add-on for WebSphere (and eventually other J2EE servers) and also ASP.NET. The WebSphere and ASP.NET
components were in beta at the time of this writing, but have been well documented on the Macromedia Web site.

Older versions of Flash were able to communicate with a server in a limited fashion with name/value pairs or with XML.
Flash Remoting offers many advantages over these methods. Because the server component can communicate directly
with the Web page through the Flash movie, more complex objects can be transferred, such as structures and recordsets.
Also, because the server contains functionality that can be accessed directly, the Flash code can be more concise. Record-
sets can be loaded into Flash movies using a new Recordset object of Flash, making it easy to sort and page through results
directly from the client browser. Also, DataGlue is a new set of functions that allows you to bind Flash user interface ele-
ments to the data. Flash Remoting also offers debugging of client and server-side ActionScript code using the NetConnect
debugger. With all of these new features, Web programming has finally come of age.

You need the following for Flash Remoting:

by Tom Muck

15

A
r
t
ic
le

s• A tool to build your Web pages (Dreamweaver MX is ideal).

• Flash MX

• Flash Remoting components (free download located at http://
www.macromedia.com/software/flash/flashremoting/)

• A suitable application server (ColdFusion MX, JRun 4, IIS with
ASP.NET, WebSphere)

• Optionally, Flash UI Components Set 2 (shown in Figure 2) and
Flash Charting Components (two sets of components offering such
things as calendar controls and graphs). These are available from
the Macromedia Exchange (www.macromedia.com/exchange)

With these items in place, you are ready to build your first client/server
application using Flash MX. We’ll build a simple search/results appli-
cation using the Northwind* database that is supplied with MS Access
and MS SQL Server. There are three things we’ll have to do: create an
interface (in Flash – not in HTML); create a recordset (using ColdFusion,
ASP.NET, or JSP); display the results of the recordset in the Flash inter-
face. I am not a designer, so the interface is very simple and the Flash
movie will never leave the first frame. You’ve all seen Flash graphics be-
fore – you don’t need me to tell you that Flash is capable of outstanding
graphical displays. We aren’t interested in graphics at this point – only
the client/server functionality of Flash Remoting.

The interface, shown in Figure 3, contains the following items:

• Input Text element named search_txt.

• Submit button (a Push Button from the UI Components) named
submit_btn

• Dynamic text element named results_txt

• More dynamic text elements named ProductName_txt, UnitPrice_
txt, and QuantityPerUnit_txt. These items should have correspond-
ing labels as well.

• Buttons to allow paging through the recordset using labels that
read First, Previous, Next, and Last. These buttons should also be
Push Button UI Components.

*If you don’t have the Northwind database, any database will work for
the demo by substituting the appropriate field names.

With the interface out of the way, we can build the server-side function-
ality. I’ll do it in ColdFusion, since that is what I know best. ColdFusion
MX has a new feature called a ColdFusion Component (CFC) that re-
ally works well with Flash Remoting. We’ll create a simple CFC named
searchProducts that will query the database for all products where the
product name is like the value that a user will type into the search field
(search_txt from the Flash movie).

A CFC is created by using a <cfcomponent> tag in a special ColdFusion
file that has a .cfc file extension. Within this <cfcomponent> tag is a
<cffunction> tag. The <cffunction> tag, for all practical purposes, works
in a similar fashion to a function in any other computer language – you
call it by name, supply the necessary parameters, and handle the result.
Our CFC looks like this:

<cfcomponent displayName=”searchProducts”>
 <cffunction name=”getSearchResult” access=”remote”
 returnType=”query”>
 <cfargument name=”search_txt” type=”string”
 default=”%”>
 <cfquery name=”rsGetProducts” datasource=”Northwind”>
 SELECT ProductName, UnitPrice, QuantityPerUnit
 FROM Products
 WHERE ProductName LIKE ‘%#search_txt#%’
 </cfquery>
 <cfreturn rsGetProducts>
 </cffunction>
</cfcomponent>

Figure 2: The second set
of UI Components for
Flash MX

Figure 1: Flash UI Com-
ponents

Figure 3: The
completed Flash
interface

Figure 4: The Property Inspector can be used to
set Click Handlers for buttons

Figure 5: Code
hints pop up
when you use
the naming con-
vention of Flash
(such as _rs for
a recordset)

Figure 6: Searching
the Northwind data-
base from the Flash
movie

15

A
r
t
ic
le

sLet’s take a look at this component line by line. The ColdFu-
sion Component (which will be named searchProducts.cfc)
contains only one function (also called a method): get-
SearchResult:

<cffunction name=”getSearchResult”
access=”remote”
 returnType=”query”>

The function specifies a return type of query. This is exactly
what we are going to return to the Flash movie – the results
of a query. The function has within it a <cfargument> tag.
This specifies the argument that will be supplied to the
CFC. In this case, the argument is the search_txt field from
the Flash interface. We’ll also give it a default value of “%”
so that the query to the database will return all results if no
value is supplied (the % is the wildcard character in SQL):

<cfargument name=”search_txt” type=”string”
default=”%”>

Next is the actual query to the database, which utilizes the
ColdFusion tag <cfquery>:

<cfquery name=”rsGetProducts”
datasource=”Northwind”>
 SELECT ProductName, UnitPrice, QuantityPerUnit
 FROM Products
 WHERE ProductName LIKE ‘%#search_txt#%’
</cfquery>

Finally, the <cfreturn> tag returns a result to the caller. In
this case the caller is our Flash movie, and the result is the
entire query that was just executed. We return the query
by name here:

<cfreturn rsGetProducts>

Now we move back to the Flash movie to add the script
for Flash Remoting. To utilize Flash Remoting services, you
have to follow these general steps in your Flash movie:

1. Include the Flash Remoting classes located in
NetServices.as in your movie. If you are going to utilize
DataGlue, include the DataGlue.as classes as well.

2. Set the URL where your Flash Remoting gateway
lives.

3. Make a connection to gateway.

4. Create the service object.

5. Define any event handlers you might need.

6. Call any service functions that you are utilizing.

This is going to require some hand-coded ActionScript in
the Flash movie. If you are unfamiliar with ActionScript,
you’ll find that it is almost identical to JavaScript and very
easy to learn. There are several very good books out there
for learning ActionScript, including Macromedia Flash MX
ActionScripting: Advanced Training from the Source, by
Derek Franklin and Jobe Makar which offers a good tutorial
approach by example.

It’s a good idea to put ActionScript in its own layer in your
movie. We’ve added a layer to the movie timeline called
actions and have added this script in the Actions panel of
Flash:

#include “NetServices.as”
if (connected == null) {
 connected = true;

 NetServices.setDefaultGatewayUrl(“http://
127.0.0.1/flashservices/gateway”);
 //my_conn uses the _conn naming convention to
enable Flash coding hints
 var my_conn = NetServices.createGatewayConnect
ion();
 var myService = my_conn.getService(“flashsample.
searchProducts”,this);
 var theRecordset_rs = null;
 var recNum = 0;
 var recLength = 0;
}
function onSubmit () {
 myService.getSearchResult(search);
}
function getSearchResult_Result(result_rs) {
 theRecordset_rs = result_rs;
 recLength = theRecordset_rs.getLength();
 results_txt.text = “There were “ + recLength;
 results_txt.text += “ records returned.”;
 firstRecord();
}
function getRecord() {
 if(recLength == 0) {
 ProductName_txt.text = “”;
 UnitPrice_txt.text = “”;
 QuantityPerUnit_txt.text = “”;
 recordnumber_txt.text = “No Records”;
 }else{
 ProductName_txt.text =
theRecordset_rs.items[recNum].ProductName;
 UnitPrice_txt.text =
theRecordset_rs.items[recNum].UnitPrice;
 QuantityPerUnit_txt.text =
theRecordset_rs.items[recNum].QuantityPerUnit;
 recordnumber_txt.text =
“Rec. No. “ + (recNum + 1) + “ of “ + recLength;
 }
}
function firstRecord() {
 recNum = 0;
 getRecord();
}
function previousRecord() {
 recNum--;
 if(recNum < 0) recNum = 0;
 getRecord();
}
function nextRecord() {
 recNum++;
 if(recNum >= recLength) recNum = recLength - 1;
 getRecord();
}
function lastRecord() {
 recNum = recLength - 1;
 getRecord();
}

That’s a lot of script to digest at one time, so we’ll go
through it a bit at a time. The first thing that you need to
do is to include the NetServices.as script. This allows you to
create Flash Remoting functionality in your Flash movie:

#include “NetServices.as”

The file is located in the \Configuration\Include directory in
your Flash MX program directory, so you don’t need to in-
clude a path. Flash will know where to look for it. If you are
debugging, you can include the NetDebug.as file as well.

Next, you have to create a connection to the Flash Remot-
ing services. Since this only has to be done once, we check

16

A
r
t
ic
le

s

17

A
r
t
ic
le

sfor a global variable flag that we create, named connected.
If it doesn’t exist, we know that this is the first time our
script has been executed. The first time through, we also
set this variable so that next time we won’t execute this
section of code:

if (connected == null) {
 connected = true;

Now, the connection. First you have to set the path to the
gateway:

NetServices.setDefaultGatewayUrl(“http://127.0.0.1/
flashservices/gateway”);

This will be a path to the Web server (http://127.0.0.1 is
our local machine) and a reference to the Flash Remoting
gateway, which is not a physical path. The CF MX server
knows that this is a reference to the gateway.

Next, set the connection:

 var my_conn = NetServices.createGatewayConnect
ion();

 Now, create a service object, which is essentially a refer-
ence to the CFC that you created. In this line, we have a
folder named flashsample at the root of our Web site with
a file named searchProducts.cfc:

 var myService = my_conn.getService(“flashsample.s
earchProducts”,this);

Next, we initialize some global variables that we’ll need for
the recordset paging. In actual practice we would probably
not use global variables, but for this simple example we are
more concerned with the functionality of the client/server
interaction:

 var theRecordset_rs = null;
 var recNum = 0;
 var recLength = 0;
}

Next, the submit button click handler function, named on-
Submit. The submit button will call the service named get-
SearchResult (our function from the CFC) using the contents
of the textfield named search_txt:

function onSubmit () {
 myService.getSearchResult(search_txt.text);
}

The submit button doesn’t know about this function yet,
but there is an easy way to add callback functions to the
new UI Components: the Property Inspector. Figure 4 shows
the onSubmit button being given a Click Handler. After the
user clicks submit, the contents of the text field are sent to
the CFC and the results are returned to the Flash movie.

Next, we’ll handle the results from the database search.
This is done with a function that is named using a naming
convention of Flash Remoting. Results are always returned
to a function named using the function name of the remote
method along with a suffix of _Result. If you recall, the CFC
will return an entire recordset to the caller, so this function
will receive that result, which we’ve called result_rs. By
giving the recordset a name with a _rs suffix, we can take
advantage of Flash’s built-in code hints and code comple-
tion when coding our ActionScript (see Figure 5):

function getSearchResult_Result(result_rs) {

 theRecordset_rs = result_rs;

The recordset object has a built-in method to allow you to
find out how many records are in it: getLength(). We’ll set
one of the global variables that we’ve already defined to
the length of the recordset and also display that in the re-
sults_txt text element in the Flash movie, along with some
descriptive text:

 recLength = theRecordset_rs.getLength();
 results_txt.text = “There were “ + recLength;
 results_txt.text += “ records returned.”;

Now we’ll call a function called firstRecord() which will
display the first record in the resultset. That function will
be explained shortly:

 firstRecord();
}

Before we get to that, however, we need to create a gen-
eral utility function that will display the current record.
This function will be used by each of our recordset naviga-
tion buttons:

function getRecord() {
 if(recLength == 0) {
 ProductName_txt.text = “”;
 UnitPrice_txt.text = “”;
 QuantityPerUnit_txt.text = “”;
 recordnumber_txt.text = “No Records”;
 }else{
 ProductName_txt.text = theRecordset_rs.items[
recNum].ProductName;
 UnitPrice_txt.text = theRecordset_rs.items[re
cNum].UnitPrice;
 QuantityPerUnit_txt.text = theRecordset_rs.it
ems[recNum].QuantityPerUnit;
 recordnumber_txt.text = “Rec. No. “ + (recNum
+ 1) + “ of “ + recLength;
 }
}

Here we are simply setting the text elements in our Flash
movie to the corresponding recordset field, or setting them
to blank if there are no records. The recordset row is ref-
erenced using the items array of the recordset. The items
array is indexed by number. We can pinpoint which record
(row) we want to look at by using the recNum global vari-
able that we set up previously. Then we can reference each
field by name (as in the expression theRecordset_rs.items[
recNum].ProductName).

All that is left is to set the click handlers for each of our re-
cordset navigation buttons: First, Previous, Next, and Last.
We can set these the same way as we set the submit button:
using the Property Inspector. Each function corresponds to a
button. Each function sets the record number and then calls
our utility function getRecord():

function firstRecord() {
 recNum = 0;
 getRecord();
}
function previousRecord() {
 recNum--;
 if(recNum < 0) recNum = 0;
 getRecord();
}
function nextRecord() {
 recNum++;
 if(recNum >= recLength) recNum = recLength - 1;

16

A
r
t
ic
le

s

17

A
r
t
ic
le

s getRecord();
}
function lastRecord() {
 recNum = recLength - 1;
 getRecord();
}

You can test this movie from the Flash environment by
clicking Control > Test Movie, or you can publish it to your
site and browse the resulting HTML page with a browser. As
you can see, the HTML page is acting as a home for the Flash
movie, but we are delivering server-side functionality to
the page. When you browse to the page, you can search the
database once, or search it again and again – the browser
doesn’t need to reload the page. The communication with
the server is done by Flash behind the scenes. Figure 6

shows the interface in use.

This was a very simple example, but it should show you
the techniques that you can use with Flash Remoting to de-
liver database content to a browser seamlessly. We’ve only
scratched the surface and haven’t even touched on things
like server-side ActionScript, DataGlue, and Web Services.
Flash MX truly revolutionizes the Web with these technolo-
gies. Try it: you might like it.

For more information on Flash Remoting, go to
www.macromedia.com/software/flash/flashremoting/
or go to the Designer & Developer center at http://
www.macromedia.com/desdev/mx/flash/. For 30-day trial
versions of Dreamweaver MX, ColdFusion MX, and Flash MX,
go to www.macromedia.com/software/trial_download/.

The dreams of a world where King Content sits on his
throne, while his Magnificent self is distributed far and wide
over a myriad of networks and devices, has been dealt some
serious blows recently. Do the wake up calls at AOL/Time
Warner and Vivendi Universal mean the end of the reign of
C

All the Kings Men

From our point of view if something is amiss in the kingdom
of content, responsibility should probably be given to all
the king’s men, and not to the king himself. In the last five
years anyone trying to gain attention claimed to be “in”
with King Content. If you wanted to be considered you had
to be doing something for him; management, repurposing,
redirection, extraction, localization, were on offer from all
sorts of companies whether they had any experience with
the complex business of building and delivering content or
not. Just as anyone in Hollywood will tell you they have a
great idea for a film, anyone in the valley would tell you
they did content.

The project we describe in this article involved “doing con-
tent” in a very real way, automatically extracting it from a
database, transforming it into various Flash and HTML files
which were then booked onto the Fantastic BroadSphere
data broadcast platform for transmission over digital ter-
restrial television. Various set top boxes, PCs, and Handheld
devices, could then receive the files.

As we describe below, the key to our success was the defini-
tion of clear boundaries and responsibilities of the various
pieces of the content chain.

Look but don’t touch

Nowhere is the Kingdom of Content metaphor more apt than

in a television studio. At the heart of the studio, shrouded
in mystique and secrecy, the content is created. Around
this core are the managers, producers and engineers who
protect and nurture the creative process. A further ring of
engineers package deliver and monitor the storage and the
transmission of the signal. Access to the core is controlled
while access to the outer ring is highly technical and (cor-
rectly) conservative. Somehow you must penetrate these
layers to gain access to the content without touching any-
thing.

The challenge connecting all these pieces was made more
difficult as the broadcaster had begun a migration from one
content management system to a new, more central and
more monolithic one.

Our main objective, with this project, was to build and
install an easy to maintain, user friendly, plug and play
content repurposing system that was totally non-invasive to
the customer. We added functionality and target devices to
their workflow without interfering with or interrupting it in
any significant way.

Why ColdFusion MX?

To build what we call the CRS (Content Repurposing System)
application, we chose ColdFusion MX for many valid rea-
sons: first of all, we needed a RAD system that would allow
us to save time for massive testing and last minute changes;
second, it should be flexible and scalable enough to allow
us future tight integration of it into the web interface of
Fantastic’s BroadSphere broadcast platform, currently
running on IBM WebSphere as a jsp based web application,
and this is the case of ColdFusion MX for J2EE Application
Servers, that will enable us to incorporate our CRS into the
existing J2EE infrastructure; last, but not least, we were
astonished by the range of new features offered by ColdFu-
sion MX, especially the XML handling capabilities, that were

